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FOREWORD

This document presents results of work performed by
Lockheed's Huntsville Research & Engineering Center under
Contract NAS8-24535, "Angle of Attack Computer Program,"
for the Aero-Astrodynamics Laboratory of Marshall Space
Flight Center. The NASA-Marshall Space Flight Center tech-
nical monitors for this contract were Mr. Alan Forney and MaV%
Homer B. Wilson, .?r., S&E-AERO-AT.
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SUMMARY

This report summarizes a study effort directed toward developing
handbook-type methods for predicting, without undue conservatism, aero-
dynamic heating rates to cones and cylinders at angle of attack. Applica-
bility of these isolated body methods to composite body geometries consisting
of cones and cylinders is also discussed. Approximate methods for compres-
sion and expansion corner regions are also given.

In general, the test data trends were predicted well by several theories.
Laminar convective heating rates to cylinders at zero-degree angle of attack
were well predicted by flat plate theory. For cylinders at angle of attack,
yawed infinite cylinder theory applied. The laminar stagnation line heating
rates were well predicted by the method of Kemp, Rose and Detra at the
angles of attack less than 30 degrees. The turbulent stagnation line heating
rates were well predicted by the method of Beckwith and Gallagher. For
cones at angle of attack, the laminar and turbulent heating rates were well
predicted by streamline divergence theory. Heating rate distributions off
the stagnation line for cones and cylinders are also presented based on avail-
able experimental data. Then, using the heat transfer theories that corre-
lated best with the test data, extrapolations to typical boost trajectory flight
conditions were made and the results are presented in the form of graphs
that can be used for rapid estimates of aerodynamic heating rates. To aid
in the calculation of aerodynamic heating rates, the local flowfield properties
for cones and cylinders are also presented. Finally two example calculations
are made to illustrate the use of the graphs presented.
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NOMENCLATURE

Symbols

CP pressure coefficient
Cp specific heat

7	
t

D diameter
4E crossflow momentum thickness ratio

EL defined by Eq. (2.7)

E T defined by Eq. (2.18)

g gravitational constant
H total enthalpy
h static enthalpy
h heat transfer coefficient

C

k thermal conductivity
M Mach number
M wt molecular weight

N defined by Eq. (2.5)
Nu Nusselt number
P pressure
Pr Prantl number
q velocity used in Section 2.3.2
q convection heating rate
R radius of cylinder
r, x position coordinates used in Section 2.3.2

Re Reynolds number
St Stanton number
T temperature (OR)
Tr recovery temperature

u l	normal component of freestream velocity

v
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NOMENCLATURE (Continued)

Symbols

V	 velocity

v 	 tangential component of freestream velocity

XL	transformed characteristic length (laminar flow)

x 	 transformed characteristic length (turbulent flow)

x	 running length; measured along surface
Z	 compressibility factor

Greek

a angle of attack
y ratio of specific heats
S, R defined in Section 2.3.2

O -1	 1sin	 ( ice, ) , Mach angle

E attached shock angle
9 flow angle
P density

angle measured perpendicular to the body axis
(0 is zero at the stagnation line)

8 cone half-angle
Subscripts

c crossflow pressure gradient effects

d downstream of corner

D based on diameter
e boundary layer edge values
L local conditions
M, c evaluation at local pressure and mean boundary

layer enthalpy
o evaluated at zero Mach number

R recovery value

r Hanks Rho Mu Reference condition (simplified method)
s stagnation conditions

vi
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NOMENCLATURE (Continued) 	 j

Subscripts`

SL	 stagnation line
r 
` --	 u	 upstream of corner`

w	 wall conditions	 3
x	 based on x	 I
oo	 freestream condition ahead of shock

right characteristic
+	 left characteristic

{i

1	 property upstream of shock
2	 property downstream of shock

r
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Super sc ript
i^

Eckert Reference Enthalpy condition	 !
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Section 1
INTRODUCTION

Plans are being considered to launch several Saturn vehicles into polar
orbit from the East Coast. This calls for launch maneuvers which require
the vehicle to fly at angles of attack of up to approximately 50 degrees.
Because Saturn vehicles were not originally analyzed for the thermal environ-
ment created by these maneuvers, a reevaluation of the ascent phase hei3ting
must be made. There are at present, however, no completely effective means
to predict induced aerodynamic heating at these large angles of attack. As a
result, extremely conservative assumptions must be made which will result
in excessive weight and cost penalties. It is therefore expedient that tech-
niques be developed to predict these heating rates as accurately as possible
at large angles of attack.

In addition to flying the Saturn vehicle, NASA is currently involved
with the development of a reusable Space Shuttle vehicle. The results of the
efforts presented herein are also directly applicable to determining heating to
various areas of the Shuttle vehicle. These areas include: (1) swept wing
leading edges; (2) swept fin leading edges; (3) centerline of round bottom delta
wings at angle of attack; and (4) bottom centerline of cylindrical fuselages.

The following sections present a technical discussion of the work done
under this contract. First, a discussion of the acquisition, reduction, and
correlation of the test data is given. Next, results of the reductions and cor
relations are given. This is followed with the design curves for application
of these results to flight heating calculations.

1-1
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Section 2

TECHNICAL DISCUSSION

r

o`

Discussed in this section are the sources of test data and methods used
in the data correlations, the theoretical methods used for compaeision with
test data, and the methods used to calculate the local flowfield properties.

It is evident that many sources of data exist in the literature. However,
when conducting data correlations one has to be very selective in the choice
of data used in order to isolate the various effects on heat transfer such as
Reynolds number, Mach number, nose bluntness, angle of attack, wall tem-
perature, compression and expansion corners, and other pressure gradient
effects such as might exist in some test facilities. One also has to look at
the accuracy of the instrumentation used to obtain the test data.

To provide meaningful insight into the effects of some of the above vari-
ables on heat transfer, several convective heat transfer theories were inves-
tigated. Some of the theories were programmed and their results were com-
pared with the data. The theories that correlated best were then used to
provide extrapolations of the existing data to provide the "best" estimate of
the aerodynamic heating environment expected during a typical boost trajec-
tory. The theories were applied only to the stagnation line. The heating
rate distributions off the stagnation line were obtained from actual test data
and as such are limited in their applicability to conditions other than the test
conditions.
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The local flowfield properties were needed to perform the data cor-
relations. The method used in the literature for presenting the test data in
many cases varied from source to source even for the same type bodies. It
was decided in the course of this work to use two standard methods, _one for
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'.	 cones and another for cylinders. The flowfield methods used in this work
are documented in Section 2.3 and flowfield results for a variety of flight
conditions are presented in Section 4.

2.1 ACQUISITION OF TEST DATA

Data were obtained froze numerous sources (Refs. 1 through 11). Cylin-
der test data correlations were made using both local and freestream flow
properties for yawed cylinders. The method used to obtain tike local flow
properties for cylinders is discussed in Section 2.3. Since there was no ap-
parent gain in accuracy and elimination of data scatter to be gained using
local flow properties all the cylinder date, correlations are presented. in
Section 3.1 using freestream properties.

MM

I

Data correlations for cones were also reduced using both local and
freestream properties. Since much less data scatter was evident using the
local flow properties, the results are presented in this form. For cones at
angle of attack the equivalent cone concept was used to obtain local flow
properties along the most windward (stagnation) streamline. The numerical
solution used for obtaining the conical flow properties is presented in Section
2.3.

Numerous other reports contained test data that were reviewed but
were rejected for various reasons. Some of the reasons for rejecting them
were: (1) insufficient data on test conditions; (2) uncertainty in methods used
to obtain local flow properties in reducing data presentation; (3) abscence of
other pertinent parameters needed for data correlations; (4) uncertainty in
air properties used, i.e., conductivity and viscosity; (5) data were not appli-
cable (not isolated body data); and (6) data were not clearly laminar or turbu-
lent, but apparently transitional.

2-2
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2.2 TIIEJRE'rICAL CONVECTIVE HEAT TRANSFER METHODS

The boundary layer on axisymmetric bodies at angle of attack is three-
diiraensional. Solution of the general three-dimensional boundary layer equa-
tions was not within the scope of this contract and, therefore, approximate
techniques were used to provide first-order corrections for the effects of
crossflow.

2.2.1 Cones

Several methods were tried and the method ultimately * selected to cal-
culateculate the convective heating rates along the most windward streamline on
cones was based on Streamline Divergence theory as first proposed by Vaglio-
Laurin in Refs. 12 and 13. Since Vaglio-Laurin' s initial work, many engin-
neers have used the Streamline Divergence method with numerous modifica-
tions. The method used here is still another modification. The modification
was necessary only for the laminar boundary layer case in order to obtain
good correlations at angle of attack.

The basic idea of the Streamline Divergence method is relatively
straightforward and is a natural continuation of the axisymmetric flat plate
analysis. As is known, axisymmetric bodies at zero-degree angle of attack
have been analyzed successfully by two-dimensional methods with the intro-
duction of various characteristic length transformations. In these trans-
formations, the local normal radius of curvature of the body is the major
contributing factor to the "stretched" characteristic length used in the heating
equations. This arises from the momentum change in the boundary- layer due

Awl to the spreading effect as it moves around the axisymmetric body. When the
non-axisymmetric body is considered,y	 y 	 or vehicle at an angle of attack in this
case, the momentum change is no longer about the normal curvature of the
axisymmetric surface, but is along the curvature of the local fluid stream-
line. The corresponding length transformation was calculated in this work

It	 for both laminar and turbulent flow along the stagnation (most windward)
streamlines.

I	 1



L MSC/HREC h 162 315

The Streamline Divergence method used to evaluate this transform is
explained in the following sections.

•	 Laminar Cones

The basic task of the Streamline Divergence method is to provide a
transformed characteristic length along the streamlines which will modify
the familiar zero pressure gradient (flat plate) heating rate equations into
relationships that will handle flows with both circumferential and longitud-
inal pressure gradients. To do this we start with the following equation
for zero pressure gradient flow fields:

-2/3 V 1/2
q = 0.332 (H r - h N	 V) Pr*	e .	 (P 1^ ) 1/2	 (2.1)

L

This is the Blasius incompressible solution modified for compressible flow
by the introduction of Eckert reference condition fluid properties, denoted
by the asterisk (*).

In addition, for comparison purposes, the following flat plate heating
rate equation was also used,

1/2

q = 0.332 (H r - h N) P rr`/3 
V
X	 (Pr Ar) 1/2	 (2.2)

L

This again is the Blasius incompressible solution modified for compressible
flow by the introductionof reference conditions based on Hanks Rho-Mu
method (Ref. 14).



(2.5)
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For an unyawed sharp cone in laminar flow, the solution for the char-
acteristic length XL is

	

X - x	 (2.3)
L - T 

For the stagnation line of a yawed sharp cone (negligible streamwise
pressure gradients), the solution for the transformed characteristic length
XL is

XL =	 x	 (2.4)
1+2(1+N LL)

where the parameters N and E L are calculated as follows (Ref. 14). The
solution for the parameter N was obtained from the solution of the cross-
flow momentum equation for inviscid flow along with certain simplifying

a
assumptions which appear valid along the stagnation line. The result is,

2

Csin  0

whe re

d 
2 
P = -2 Pe
	

sins cos 0 1 _ Poo
do	

D Ve2
	 sin (a + 0)	 Pe

(2. 6)

The quantity EL is defined as

EL = 1 + 0.718 (4 1 + FE , c - 1) (2 zc)exp K	 (2.7)
	 F

^M a
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where

exp K = 0 when N < 0.05 and 0.99 <N <1.01

exp K = -0.194 exp [ - 2/3 N (N - 1) ) when 0.05 < N <0.99

exp K = 0.194 exp ^- 2/3 (N - 1) ] when N > 1.01

and	
Ec - 0.294	 0.355

FE, c	 0.402	 P r 	(2.8)

(Z T)
E -	 M, c	 (2.9)c

(
Z T 

) e, SL

The quantity (Z T),	 is evaluated at the local pressure and mean boundary^^r
layer enthalpy. Equations (2.7) through (2.9) were developed in Ref. 14 on
the basis of providing the best fit to exact similiar solutions.

• Turbulent Yawed Cones

For turbulent flow over cones, three heating rate methods were
selected for comparison with test data. They are: (1) the Eckert Reference
Enthalpy method using the Blasius skin friction law, i.e.,

,^ 0.2

q = 0. U266 7 (p^ fie)°'8 X	 (Hr - hwT	 (2.1^)

Pr *	 T

(2) the Eckert Reference Enthalpy method using the Shultz-Grunow skin friction
law, i.e.,

0.185 p* Ve
q -	 *0.6667	 # 2.584 (Kr w)	 (2.11)

Pr	 [Alog(Re )^

2-6
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whe re

P y X T
Rey _ 
	

(2.12)
µ

and finally (3) the Hanks Rho-Mu met.1i^d, also using the Shultz-Grunow skin
friction law, i.e.,

0.185 p V	 µ
q -	 0.6667	 r 

e	
2,584 µr ^ (HR - hw)	 (2.13)

Pr y 	 Alog(Rer + 3000)	 o

whe re,
0

Pr  V X
Re = r r 2 e T	 (2.14)

µo

and

H 3/2
e

90 _ µr hr

(ZT)r+200
H

(ZT) T he)+ 200
r

(2.15)

For the stagnation line of an unyawed sharp cone in turbulent flow, the
solution for the transformed characteristic length X T is,

XT = (9) x
	 (2.16)	 V
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For the stagnation line of a yawed sharp cone in turbulent flow, the

solution for the transformed characteristic length'X'T is

XXTS 1+ 
5 (1+E N)
4	 T

(2.17)

where N is evaluated using Eq. (2.5). The parameter E T is evaluated in Ref. 14
as follows,

—^E T = 1 + 0.55 (^1 +. FZ c o - 1) (2 E o) exp K

E	 4
L

1 +0.718 ( 1 +F Z' c^ o - 1) (2 E ' o) exp K	 (2.18)

where the quantities FE" c, o and Ec o are evaluated using Eqs. (2.8) and (2.9),

respectively, except that the Mach number is now zero, therefore the mean
boundary layer enthalpy is now

hrn, 0 0.5(h e +h )
	

(2.19)

2.2.2 Cylinders

The methods used to calculate the three-dimensional boundary layer

111.,

	
heat transfer on the stagnation line of yawed infinite cylinders are based on the

Crossflow Approximation method. This method employs existing similiar

solutions to the boundary layer equation.

2-8
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•	 Laminar Yawed Cylinders

Two stagnation line laminar heat transfer methods were programmed
for comparison with the test data. One method used the correlations of Kemp,
Rose and Detra (Ref. 15), and the other used Beckwith' s yawed cylinder method
(Ref. 16). The stagnation line convective heating rates for equilibrium air
was analyzed in Ref. 15 . The resultir)g heat transfer correlation obtained
was

0.44

	

(Le0.565	 ^^	 dVp µµe	 (HR- hw)	 (2.20)
Pr 0.6 	 w w dR	 w ww

If the crossflow velocity component is supersonic, then the velocity gradient
is computed from Newtonian theory, i.e.,

V(.L - P

	

TR _ Rp 2-0)	 ^ (2.21)Pe

If the crossflow velocity component is subsonic, then the velocity gradient is
computed by the following equation from Ref. 16;

dV V00 sin a
TR =	 2 R	 5.1 cos (M o sin a) - 1.6 (2.22)

The other laminar heat transfer solution for the stagnation line of a yawed
infinite cylinder is that of Beckwith (Ref. 16), i.e.,

2-9
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3

is

,I,	 0.06 k

q = 0.354	 in a aR	
µw T e	 oo (T 

R t)	 (2.23)
µe w	 /1oo	

w

z

Equation (2.23) is based on exact boundary layer solutions for constant spe-
cific heat and a constant Prandtl number equal to 0.7. The velocity gradient
is calculated using either Eq. (2.21) or (2.22).

•	 Turbulent Yawed Cylinders

The turbulent yawed cylinder stagnation line heat transfer method used
was that presented by Beckwith and Gallagher in Ref. 8, i.e.,

V^ cos a 0.6 (

IR-
)V0.2	 0.8 kooq r 0.0288	

µ$ 	 (pa, ^w)	 ^^ (TR - Tw)	 (2.24)

2.3 LOCAL FLOWFIELD CALCULATION METHODS

This section presents methods used to calculate the local flowfield
properties on cones and cylinders. Inviscid analysis methods were used,
and no boundary layer interactions were considered.

2.3.1 Yawed Cylinder Flow Fields

The local flowfield at the stagnation line of a yawed infinite cylinder
is computed as the real gas stagnation conditions behind a normal shock Sy

f 9.^

wave. The real gas (equilibrium air) properties are computed using the
method of Hansen (Ref. 17). The normal shock calculation used is similar
to that presented in Ref. 18. Basically the solution involves the solution
of the continuity, momentum, and energy equations plus an equation of state
which includes compressibility effects. The following sketch shows the flow-
field geometry.

2-10
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u2

	

v2 	^1

v3

u 1	 v 1
a

i;v
00	 v1 = v

2 

=
V3
	 (2.25) I(

r

5.

i

Thepert,',nent equations are (2.25)

1
P2	 'a2 2	 Conservation

2.26P = 1 + 73^ Ml2 1 - u	 of Momentum	 (	 )
1	 1

i
i2

h2 =	 yoo - 
1	 2	 _ u2	 Conservation	 Ih 1	 1 +	 2	 M1 1	 u1	 of Energy	 (2.27) 

i

p 1 µ1 _ p2 112	 Continuity	 (2.28)	 j

P __ R	 Equation of	 (2'29)
2 Mwt p 2 T 2 Z 2	 State 

i
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dr tan Q # A)dx
(2.30)
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An iteration procedure is used to obtain the solution to the preceding set of
equations. After the normal shock solution is obtained, the flow is isentrop-
ically decelerated such that u 2 equals zero with a corresponding increase in
P2 and T2.

2.3.2 Cone Flow Fields

The method used to solve the conical flow field is the method of Ref. 19.
For cones at angle of attack the equivalent cone concept was used to obtain
conical flow solutions along the most windward streamline. The method is
well suited to treat ideal, frozen, or equilibrium reacting gas mixtures. The
resultant equations require a double-iterative solution rather than an iterative-
integral solution such as the Taylor-Maccoll method.

Consider a right circular cone immersed in a supersonic flow (Fig. 2-1).
The flow downstream of the shock wave is irrotational for conical flow. If
the Mach number downstream of the shock wave is greater than unity, the
characteristic equations are real. They are:

d(^ + cot0 qa + s^nA sink dr _ 0
q	 rsin ( ^ + A)

(2.31)

Along the right (--) characteristic the finite difference analog of Eq. (2.32)
is written;

- 6 + cot A (q2 9w) sin Z sin C dr = 0	 (2.32)
q	 sin ff s°i)

2-1%
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while along the left (+) characteristic

- 8 - cot /A (g2 'gw) + sin A sin >; dr = 0
2	 q	 sin (g - O)	 r +

(2.33)

where the barred values are average between the shock and the cone surface.
With the aid of the physical characteristic equation (2.30) and geometry the
axisymmetric term is found;

Id 	 = 2 1-S
(1+S) (2.34)

where S	 cos (E + (3) sin a
cos (a'+ p) sinE

and where (3 + = tan
-1

 cot (>; + Q)

The final relations necessary for the solution are provided by oblique
shock theory. The relations define the properties behind the shock in terms
of the shock angle (E) for a given freestream condition. The solution is
obtained by choosing a shock angle, solving the oblique shock relations, and,
with this knowledge, finding qw in Eq. (2.33). Eq. (2.34) must also be satisfied
and is used toau a the inaccuracy of the shock	 iterative so ut'g g	 a y	 hoc .angle. Anonsolution
driving the left-hand side of Eq. (2.33) to zero produces the desired result.

The distinction between ideal, frozen, or equilibrium solutions comes
into play only in the oblique shock solution and the relationship between q
and A.

To check the accuracy of the approximate treatment, a comparison was
made against the conical flow tables given in Ref. 20. An examination of the
results presented in Fig. 2-2 reveals excellent agreement over the entire range
of approach Mach numbers and cone semi-vertex angles.

2-1.3

LOCKHEED HUNTSVILLE RESEARCH & ENGINEERING CENTER

AIM

x `	 8sc



E

r
`s+

LMSC/HREC D162315

t

Y

`R

f.

r
\\

E ^'

s#
x

M e
00

---► X
ii

r
Cone Surface

Right
Characteristic

Left Characteristic	 ^.
' 1

i

1

4

Shock Surface
l

I

I

Fig. 2-1 - Right Circular Cone Immersed in a Supersonic Flow

2-14

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER

w

Ar jig,



=MENA

77-1

Y^

kn

10

M
M

^ 4
C
z

3
A.

M
M

2

Ln

cU

z 4-4p . M
M

lk

z

rnz
rn

M
00 10 7

00

00
00

M =2
00

TN 1135

0	 Approximate

480	 4	 8	 12	 16	 20	 24	 28	 32	 36	 40	 44

Cone Semivertex Angle, 0, degrees
4

Fig. 2 -2 Variation of Mach Number at the Surface of a Cone with Cone Semivertex Angle
for Various Upstream Mach Numbers

N
LO
^-a
Ln



LMSC/HREC D162315

Section 3
RESULTS

Heating rate data correlations for cylinders and cones in laminar
and turbulent flow are presented in this section. Also presented for com-
parison with the data are results of the theoretical investigations conducted
to provide a meaningful extrapolation of the data to flight conditions.

3.1 YAWED AND UNYAWED CYLINDERS

Yawed cylinder data correlations were made using the following four
methods, i.e.,

NuL versus Re 

St 	 versus Re 

Nu	 versus Re
00	 00

•hj

St	 versus Re
00	 00

From the observed trends of the data, there was no advantage seen in corre-
lating the data in forms other than Nu 

00
versus Re00; therefore, this is the

only form presented. Cylinder test data were obtained from numerous
sources for laminar flow. However, for turbulent flow, very little test data
were available
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3.1.1 Laminar Results

The resulting data correlation for laminar flow over cylinders at zero
degree angle of attack is shown in Fig. 3-1. Sources of the data are noted
on the figure. As the figure shows, the data correlate well with the Blasuis
flat plate results, namely

Nu = 0.332	 Re
P r0.4

Figure 3-2 shows the Stanton number versus Reynolds number correlation
for the same data. Fairly good agreement is also noted with the Blasius
flat plate results. Figures 3-3 through 3-6 show the freestream Nusselt
number versus freestream Reynolds number correlations for angles of attack
of 10, 20, 30, 40 and 50 degrees. Again the sources of the selected data are
noted on the figures. Also shown are two yawed infinite cylinder theories.
Beckwith' s laminar cylinder theory, Ref. 16 is shown as the dashed line,
whereas the data correlation theory of Ref. 15-Kemp, Rose and Detra, is
shown as the solid line. The theory of Kemp, Rose and Detra is shown to
correlate best at all angles of attack except 50 degrees, where the difference
between the two theories is small. Referring to the figures, Mach number
effects are evident.

3.1.2 Turbulent Results

As mentioned earlier, the available test data for turbulent flow over
yawed cylinders was very limited. Figure 3-7 shows the Nusselt number
versus Reynolds number data correlation for angles of attack of 30 and 50
degrees. As is evident from the figure, Beckwith' s turbulent infinite cylinder
theory correlates well with the test data.
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3.2 YAWED AND UNYAWED CONES

Cone test data correlations were made using local and freestream flow
properties. The local flow properties were calculated using the equivalent
cone method. Cone surface pressures predicted using this method for the
stagnation line were compared with available test data, and in all cases good
agreement was evident. Less data scatter was evident using the local flow
properties, therefore only these results are presented.

3.2.1 Laminar Results

Figure 3-8 shows the local Nusselt number versus local Reynolds
number data correlation for several cone half angles and Mach numbers,
all at zero-degree angle of attack. Note that most of the data are grouped
together in a line and correlated well when plotted in this form. The wall
temperature-to-total-temperature ratios for the data ranged from 0.2 to 0.5.
The Mach number effects (for the tunnel conditions used) were small. Thez'
Mach numbe r varies f rom 2.49 to 10.1. The cone half angle varied f rom 5
to 25 degrees. However, from a plot si -;i as this;, where more than one
parameter is changed between sets of data it is difficult to isolate the indi-
vidual effects. In Section 4 of this report it is shown that Mach number and
cone half angle effects are present and should be considered.

Also shown in Fig. 3-8 are the theoretical results obtained using Eqs.
(2.1) and (2.2). There is very little difference between the two theories
although Eq. (2.1) tended to predict the data slightly better than Eq. (2.2).
Figure 3 -9 shows the local Stanton number versus local Reynolds number
data correlation. Figures 3-10 through 3-20 shows the data correlations for
cones in laminar flow at angles of attack from 5 to 45 degrees. Figures
3-10, 3-12, 3-14, 3-16, 3-18 and 3-20 s how that the trend of the data with
angle of attack is predicted quite well using Streamline Divergence theory.
However, to obtain the theoretical variations of heating rates with angle of
attack, Eq. (2.4) was not used per se. Using Eq. (2.4) per se, the theo-
retical results showed a huge increase in heating rate as the angle of attack
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increased from zero degrees. This resulted in theoretical results approx-
imately 7076 higher than the data at all angles .of attack. However, the theo-
retical results showed that the proper variation with angle of attack could be
predicted by Eq. (2.4) if this initial discrepancy could be corrected. For
this reason the following equation for X L was used and showed good corre-
lations with the data, i.e.,

x
1+2(1+NEL)a

XL a XLa = 0 deg	 x
1+2(1+NEL)a=0 deg

(2.35)

1

whe re

_ x

XLa = 0 deg 3

The data of Bushnell (Ref. 3) tend to fall below the theoretical results at all
angles of attack. This is attributed to the data being taken on a blunt cone,
and the method used (in Ref. 3) to obtain the local flow properties for use in
reducing the heat transfer data was different than that used in this report.
An estimation made to determine the magnitude of the flow property effects
showed that the data should be about 15% lower than the theoretical sharp
cone results.

3.2.2 Turbulent Results

Figures 3-21 through 3-26 show the turbulent cone data correlations.
Turbulent cone data available in the literature were more scarce than laminar
cone data. Shown in Fig. 3-21 along with the data correlations are the theo-
retical results obtained using Eqs. (2.10) and (2.13). The theoretical results
obtained using Eq. (2.11) fell between the results obtained using Eqs. (2.10)
and (2.13) and in most cases very small differences were observed between

3-4
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the three theories for the flight conditions investigated. Figure 3-21 shows
that the results obtained using Eq. (2.10) tend to correlate best with the test
data. It can be seen that the Mach number effects are well predicted by the
theories and they are more pronounced for turbulent flow than for laminar
flow. The f reeflight data of Ref. 7 was predicted well by Eq. (2.10) through-
out the portions of the flight envelope where the flow was completely turbu-
lent. From Figs. 3-23 and 3-25 it is evident that the Streamline Divergence
theory, Eq..(2.17) predicts the data trend quite well at angle of attack. No
problems were encountered using Eq. (2.17) per se as were encountered in
the laminar case.
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Section 4
CONVECTIVE HEAT TRANSFER, DESIGN CURVES FOR CONES-

AND CYLINDERS AT ANGLE OF ATTACK

The purpose of this section is to present the results of the work of
Sections 2 and 3 in a form that can be used to determine heating rates to cone
and cylinder shapes in freeflight at angle of attack. From the design curves
presented, it is possible to obtain windward streamline and off-windward
streamline heating for both laminar and turbulent flow. The following sec-
tions discuss and explain these design curves. Then, two example problems
are given, one for a cylinder and one for a cone. Following this, a discussion
of the range of applicability of these "isolated" cone and cylinder curves to
composite cone-cylinder -flare shapes is given.

4.1 HEAT TRANSFER DESIGN CURVES

For the convenience of the user these curves are presented in the
following order:

Type Curves	 Figure Numbe rs

I.	 Cylinders
A. a = 25 deg, laminar and turbulent, M

00 
2 to 12	 4-1, 4-2

B. Angle of attack correction factors for a V25 deg
(except a = 0 deg)	 4-3, 4-4

C. a = 0 deg, laminar and turbulent 	 4-5
D. Circumferential distributions, laminar and

turbulent	 4-.6, 4-7

H.	 Cones
A. a= 0 deg, laminar, M 0 2 to 12	 4-8-4-11
B. a = 0 deg, turb'a.ent, M oo = 2 to 12	 4-12-4-16

4-1
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Type Curves	 Figure Numbers
t

II.	 Cones (Continued)
C. Angle of attack correction factors for a 0 deg,

M = 2 to 12, laminar and turbulent 	 4-17, 4-18
ar	 00

D. Circumferential distribution, laminar and
turbulent	 4-19, 4-20

III. Flowfield Parameters
A. Cylinders, M

00 
= 1.5 to 26, ac = 5 to 50 deg (altitude

= 100,000 ft':)	 4-21 -- 4-23

B. Cylinders, altitude correction factors	 4 -24-4-25
C. Cones, M00 = 1.2 to 26, a + 0 5 to 50 deg (altitude

= 100,000 ft)	 4-26-4-28

D. Cones, altitude correction factors 	 4-29, 4-30
E. Viscosity and conductivity of air as a function of

temperature and pressure	 4-31, 4-32
F. Adiabatic wall temperature	 4-33

IV. Range of Applicability

fit The details of each of these curves are; now discussed beginning with
the cylinders. Freestream Nusselt number, at ac = 25 deg, as a function of free-
strearn Reynolds number is presented for laminar and turbulent flow on Figs.

tF

4-1 and 4-2. It is noted that there is a Mach number effect of these values,
therefore, separate curves are shown for M00 = 2 to 12. These curves are

obased on a wall temperature of 560 R. This wall temperature affects the
NuD^ value only through the heat transfer coefficient an the Nu definition

j

	

	 !

(hc D/k 00),
 Note that the k value used here is the freestream value making

i!Nu a f reestream Nusselt number. An angle of attack value of 25 deg was 	 r;
chosen as a "reference" condition for presenting these curves. For angle

t,
of attack values other than 25 deg, the curves of Figs. 4-3 and 4-4 are
provided — again for laminar and turbulent flow. The curves give the ratio
of Nu D, ao at a given angle of attack to Nu D, 

co 
at an angle of attack of 25 deg.

Since there is a Mach number effect, curves are presented for M = 2 to 12.
CO 	

a

4-2
t
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These curves are also presented for a wall temperature of 5600R. Figures 4-3
and 4-4 are for angles of attack down to 5 deg because the Nu based on diameter
does not correlate at a values near 0 deg. The correlating parameter near
0 deg is Nu based on x, running length down the cylinder, versus Reynolds
number also based on x. Therefore, Fig. 4-5 is given for use at a = 0 deg.
Roth laminar and turbulent curves are provided.

Circumferential heating distributions on cylinders at angle of attack
values of 10 to 50 deg are given for laminar and turbulent flow in Figs. 4-6
and 4-7. Specifically, heat transfer coefficient at an angle 0, measured away
from the windward streamline to the local point, ratioed to the windward
streamline value is shown as a function of 0. These figures were derived
from the data of Ref. 1 for laminar flow, and from Ref. 8 for turbulent flow.

The cone heating curves are shown beginning with Fig. 4-8. The heating
parameters for cones are correlated and presented in a way similar to that
used for cylinders. However, there is one additional parameter to be con-
sidered, namely the cone angle. Also local rather than freestrearn properties
are used, and the "reference" value of Nu is at a = 0 deg rather than 25 deg.
Local Nusselt number at a = 0 deg based on x, the distance from the cone apex
to the local point at which heating rates are needed, versus local Reynolds num-
ber are shown on Figs. 4-8 to 4-16. Figures 4-8 through 4-11 are for laminar
flow while 4-12 through 4-16 are for turbulent flow. Note that a separate figure
is given for each Mach number and that varying cone angles are shown.

For cones at angles of attack other than 0 deg, the correction factors of
Figs. 4-17 and 4-18 are given for laminar and turbulent flow, respectively.
These curves present the ratio of local Nusselt number at a given angle of
attack to the local Nusselt number at an angle of attack of 0 deg as a function
of angle of attack. These values are given for cone angles of 5, 15 and 25 deg
and for Mach numbrs of 2 to 12,

4-3
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1

These correction factors were generated for a specific altitude of
100,000 ft, however, the altitude correction factor is small for altitudes from
sea level to approximately 400,000 ft. These curves appear to be somewhat
random which is due to two factors. First is the fact that the shock angle on
the cones varies with three parameters, cone angle, Mach number, and angle
of attack. The second factor is the erratic behavior of thermal conductivity
(Fig. 4-32) with temperature and pressure in the regions covered.

Circumferential heating distributions for cones are presented in Figs.
4-19 and 4-20 for laminar and turbulent flow. As in the case for cylinders,
the heat transfer coefficient ratios are presented as a function of 0, the angle
measured away from the windward streamline. These curves are given as
reasonable approximations for use for cone angles up to approximately 25 deg
rather than for any specific cone angle value. A scarcity of cone data did not
allow a comprehensive determination of the effect of cone angle during the
present study. The results shown in Figs. 4-19 and 4-20 are fairings and ex-
trapolations of the data in Refs.3 and 9 for laminar and turbulent flow,
respectively.

4.2 LOCAL FLOWFIELD CURVES FOR CONES AND CYLINDERS

In order to obtain Nusselt numbers, hence heating rates, from the pre-
ceding design curves it is necessary to know the local Reynolds number.
To assist the user in obtaining these, the curves of this section are presented.
First, for cylinders, local static to freestream static temperature, density,
and velocity ratios are given in Figs. 4-21, 4-22 and 4-23. These are given
as a function of Mach number- and angle of attack. Note on Fig. 4-23 that
the velocity ratio variation with Mach number is negligible. These figures
are for an altitude of 100,000 ft. For different altitudes Figs. 4-24 and 4-25
present correction factors as indicated on each respective curve.

For flow` fields on cones, Figs. 4 -26, 4-27 and 4-28 give temperature,
den_,ry, y ,	 Yit and veloc ity ratios as a function of Mach number. Here the sum of, 
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angle of attack and cone half-angle has been used rather than angle of attack

as in the cylinder curves. Again, these curves are for an altitude of 100,000

ft, and altitude correction factors are given in Figs. 4-29 and 4-30.

Figures 4-31 and 4-32 present viscosity and thermal conductivity for air

as a function of temperature and pressure. Viscosity, of course, is needed

in determining Reynolds number, and conductivity is needed for determining

heat-transfer coefficient from the Nusselt number. Figure 4-33 presents the

ratio of adiabatic wall temperature to total temperature, as a function of free-

stream velocity. The total temperature used here, is defined to be the ideal

gas value as follows:
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Heating rates are desired on the windward streamline and 45 deg away from
the windward streamline. First, the freestream Mach and Reynolds number

+	 must be determined.

I	 From the 1962 Standard Atmosphere table, the following are determined

M	 -	 12.100
Poo _	 1.11 x 10-4 lbm/ft3

T	 = 479.00R
CO

P	 = 1.34 x 10 - 3 atm

k From Fig. 4-31	 µ	 = 1.1' x 10 -5 lb	 /ft-sec and from Fig. 4-32 k 	 -r. oo	 m 00

3.6 x 10 6 Btu/ft-sec- 0R. -..

From these values

DPoo VRe	 _	 °°	 °°	 = 2.62 x 10 5, oo	 µ

At this Reynolds number, the _flow should be laminar, therefore from Fig. 4-1

NuD, ao, a= 25 deg = 8.6 x
210

Then ;from Fig. 4. 3,
ti

Ir

Nu 
D, 

oo , a= 40 de g
a

_ 1.68	 1.7NuD, co, a =25 deg

4-6
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4.3.2 Example Problem No. 2

As a second example, assume we have a cone with a half-a-.agle of 15
deg. Heating rates are desired at apoint on the windward streamline 10 ft
aft of the apex and at a point at this same axial distance but at 30 deg away
from the windward streamline. The cone is flying at the following conditions:

Altitude 50,000. ft
Velocity 10,000.ft/sec
Angle of Attack = 20. deg

0Wall Temperature = 5W R

The following values are taken from an atmosphere table:

 = 390•°RT_
00

P	 = 1.14 x 10- 1 atm.
00

P1.16 x 10 -2 lb	 /ft 300	
M

M	 10.3
00

At M	 10.3 and a + 0	 35 deg,00

T 2 8.2 from Fig. 4-26 (at 100,000.ft)

PZ	 -
6.2	 from Fig. 4-27 (at 100,000. ft)

Ain

V2
0.785 from Fig. 4-28 (at 50,000.ft)

T2	P?
laps For the altitude correction for — and 	 refer to Figs. 4-29 and 4 -W-30T,	 P

from which

it
K
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TCF = 0.99

pCF = 1.01

for 50,000, ft

for 50 , 000. ft

Therefore, for 50,000 ft

it

111
	 and

LMSC/HREC D162315

TZ

T	 0,99 (8.2) = 8.12
1

p2 '	 1.01 (6.2) = 6.46
pl

T2 = 8.12 (390.0)' _ 3160.0°R

+ p2	 _ 6.46 (1.1 6 x 10-2)
2-

-7.28x 10-	
lb

3AM
ft

^ V2 = 0.785 (10,000) - 7, 850. ft/sec{ _

From Fig. 4-31, µ2 = 3.9 x 10 5
lb

=f 

From Fig. 4-32, kL = 1.5 x 10 5 Btu 
oft-sec- R

From which

Re
P2

10?=	 A = 14.6 x
x L µ2

4- 9
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4

At this Reynolds number it can be safely assumed that turbulent flow exists.
From Fig. 4-169

Nu x L =	 4.2 x 104
a'= 0 deg
M	 = 10 deg

zFor an angle of attack of 20 deg and M= 10o

Nu x, L, a = 20 deg	 1.9	 from Fig. 4-1$Nu_	 x	 =o degeg

and

_ ,	
= 1.9 (4.2 x 104) = 7.97 x 104.Nux, L, a 20 deg= 

From this, the following results:

(Nux L, a= 20 deg " (k L)-1----_-	 xh	 =	 T 1.2	 10C x

From Fig.; (4-33)'

T
Taw '' 8000,.°R	 at � = 0.9

T

and

Btu
q	 = he ( Taw	 Tw) ' 890.

ft -sec

on xhe windward streamline at a point ' l0 ft from the apex.

4-10

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



f
f

Now for the heating at a point also 10 ft from the apex but at 30 deg
away from the windward streamline, refer to Fig. 4-20. At = 30 deg, a =
20 deg

he^ 
= 30 de = 1.11h

c0 0 deg

f roar_ which
u

,.

^ - I
q = 30 deg	 1.11 (890) 980. BZ--

ft -sec

4.4 REGIONS OF APPLICABILITY OF ISOLATED BODY DESIGN CURVES

When using the preceding design curves on composite shapes such as
a cone-cylinder-flare, it is desirable to know how close to a junction the
curves	 Twoapply.	 cases are considered here, downstream of an expansion
corner, and upstream of a compression corner.	 Data for these regions are
limited in that instrumentation locations are usually* too widely spaced in the

_ corner region to give a distribution.	 However, the curves of Fig. 4-34 are
given as an approximate means for determining the distance downstream of
an expansion corner at which the cylinder curves become applicable.
Figure 4-34 presents x/D, the distance downstream-to-cylinder diameter
ratio, as a function of freestr 	 aa	 eam Mace number for various ^,.ngles of attack.
This curve is for laminar flow only. 	 However, indications are that when there
is turbulent flow ahead	 it	 laminar downstream in theof a corner,	 goes	 expan-
sion region.	 Therefore, this curve should give a reasonable approximation.
On the cone upstream of the expansion corners the isolated- cone design curves
should apply all the way to the corner.

j

In compression corner regions, the available heating data were not con-
sistent enough to allow the development of a_set of curves similar to Fig. 4-34.
In lieu of this, the following equations from Ref. 21 are offered as a me, 	 for	 t

4-11
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MP

handling problems in these regions. Upstream of a compression corner, the
isolated cylinder curves apply up to the separation point. The problem is
then to define where separation will occur. This can be estimated by defining
a critical pressure coefficient at which separation will occur. The relation-
ships are:

For laminar flow:

-0.306
2.03 (M2 2 - 1)

CPcritical	 (Re	 0.25
1 X , L)

For turbulent flow:



j

LMSC/HREC D162315

where du is the distance upstream of the corner to the separation point and

au is the boundary layer displacement thickness upstream of the corner, M
is the local Mach number upstream of the corner.

For turbulent flow:

8.55
au - 1.1X106 M-1.67  
S -	 u	 Pu	 u

where Pp is defined by the expression:

For laminar flow:

17
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?	 where d  is the distance downstream of the corner to the reattachment point.

For turbulent flow;

d 	 (Rex, u) 01.2

buP P 3.15M 5.78 d p
u	 — y ---
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iF

3j

For laminar flow:

h
c ' in separated region,

= 0.42
h

h .
C, u

For turbulent flow:;

rI,

Y

c ' in separated region _ 0.84
; Y!

Y

c' u

t

I

I

2

j 4-15
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I
Section 5

CONCLUSIONS

The cylinder test data correlated well when plotted in the form of free-
stream Nusselt number versus freestream Reynolds number. The effects of
Mach number were considerable and were predicted well by the theory. Lam-
inar convective heating rates to cylinders at zero degree angle of attack were
well-predicted by flat plate theory. For cylinders at angle of attack, yawed
infinite cylinder theory applied., The laminar stagnation line heating rates
were well predicted by the method of Kemp, Rose and Detra (Ref. 15). The
turbulent stagnation line heating rates were well predicted by the method of
Beckwith and Gallagher, Ref. $.

The cone test data correlated best when plotted in the form of local
Nusselt number versus _local Reynolds number. 	 The effects of Mach number

3 :E

were more pronounced for turbulent flow than for laminar flow. 	 The heating
rate results were well predicted by Streamline Divergence theory, {

Much more useful test data are needed especially for turbulent flow
over yawed cylinders and cones.	 Also, more test data are needed on circum-
ferential heating rate distributions for a wide range of Mach numbers and
cone half -angles and for turbulent flow over cylinders. 	 The use of a consis-
tent method for obtaining local flow properties on cones helped considerably

{ in obtaining good data correlations. 	 Extrapolation of ground test data to
flight conditions is a crucial step.	 Generally ground test data are obtained at

i low stagnation temperatures, such that real gas effects are not important. It
is felt that the use of theories for, extrapolation of data to flight conditions is
meaningful.
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